/*****************************************************
This program was produced by the
CodeWizardAVR V2.05.0 Professional
Automatic Program Generator
© Copyright 1998-2010 Pavel Haiduc, HP InfoTech s.r.l.
http://www.hpinfotech.com
Project :
Version :
Date : 9/29/2014
Author :
Company :
Comments:
Chip type : ATmega32
Program type : Application
AVR Core Clock frequency: 12.000000 MHz
Memory model : Small
External RAM size : 0
Data Stack size : 512
*****************************************************/
#include <mega32.h>
#include <stdio.h>
#include <delay.h>
#include <stdlib.h>
#include <string.h>
float sensor1,sensor2;
char *suhu,*suhu2;
unsigned char data[14];
unsigned char crc,mon;
int i;
unsigned char cek[4];
// Standard Input/Output functions
#include <stdio.h>
#define FIRST_ADC_INPUT 0
#define LAST_ADC_INPUT 1
unsigned int adc_data[LAST_ADC_INPUT-FIRST_ADC_INPUT+1];
#define ADC_VREF_TYPE 0x40
// ADC interrupt service routine
// with auto input scanning
interrupt [ADC_INT] void adc_isr(void)
{
static unsigned char input_index=0;
// Read the AD conversion result
adc_data[input_index]=ADCW;
// Select next ADC input
if (++input_index > (LAST_ADC_INPUT-FIRST_ADC_INPUT))
input_index=0;
ADMUX=(FIRST_ADC_INPUT | (ADC_VREF_TYPE & 0xff))+input_index;
// Delay needed for the stabilization of the ADC input voltage
delay_us(10);
// Start the AD conversion
ADCSRA|=0x40;
}
// Declare your global variables here
unsigned char kbhit(void){
//return nonzero if char waiting polled version
unsigned char b;
b=0;
if(UCSRA & (1<<RXC)) b=1;
return b;
}
void adc1(void)
{
sensor1=adc_data[0]/10;
suhu=(char*)&sensor1;
//printf("%.2f",sensor1);
crc=0;
data[0]=0xAA;
data[1]=0x01;
data[2]=0xDA;
data[3]=suhu[0];
data[4]=suhu[1];
data[5]=suhu[2];
data[6]=suhu[3];
data[7]=0x00;
data[8]=0x00;
data[9]=0x00;
data[10]=0x00;
data[11]=0x00;
data[12]=0x00;
data[13]=0x00;
for(i=0;i<14;i++)
{
crc=crc+data[i];
mon=256-crc;
};
putchar(data[0]);
putchar(data[1]);
putchar(data[2]);
putchar(data[3]);
putchar(data[4]);
putchar(data[5]);
putchar(data[6]);
putchar(data[7]);
putchar(data[8]);
putchar(data[9]);
putchar(data[10]);
putchar(data[11]);
putchar(data[12]);
putchar(data[13]);
putchar(mon);
//printf("%.2f",sensor1);
}
void adc2(void)
{
sensor2=adc_data[1]/3;
suhu2=(char*)&sensor2;
//printf("%.2f",sensor2);
crc=0;
data[0]=0xAA;
data[1]=0x01;
data[2]=0xDB;
data[3]=suhu2[0];
data[4]=suhu2[1];
data[5]=suhu2[2];
data[6]=suhu2[3];
data[7]=0x00;
data[8]=0x00;
data[9]=0x00;
data[10]=0x00;
data[11]=0x00;
data[12]=0x00;
data[13]=0x00;
for(i=0;i<14;i++)
{
crc=crc+data[i];
mon=256-crc;
};
putchar(data[0]);
putchar(data[1]);
putchar(data[2]);
putchar(data[3]);
putchar(data[4]);
putchar(data[5]);
putchar(data[6]);
putchar(data[7]);
putchar(data[8]);
putchar(data[9]);
putchar(data[10]);
putchar(data[11]);
putchar(data[12]);
putchar(data[13]);
putchar(mon); }
void main(void)
{
// Declare your local variables here
// Input/Output Ports initialization
// Port A initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTA=0x00;
DDRA=0x00;
// Port B initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTB=0x00;
DDRB=0x00;
// Port C initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTC=0x00;
DDRC=0x00;
// Port D initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTD=0x00;
DDRD=0x00;
// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=0xFF
// OC0 output: Disconnected
TCCR0=0x00;
TCNT0=0x00;
OCR0=0x00;
// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer1 Stopped
// Mode: Normal top=0xFFFF
// OC1A output: Discon.
// OC1B output: Discon.
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
TCCR1A=0x00;
TCCR1B=0x00;
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;
// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=0xFF
// OC2 output: Disconnected
ASSR=0x00;
TCCR2=0x00;
TCNT2=0x00;
OCR2=0x00;
// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
MCUCR=0x00;
MCUCSR=0x00;
// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=0x00;
// USART initialization
// Communication Parameters: 8 Data, 1 Stop, No Parity
// USART Receiver: On
// USART Transmitter: On
// USART Mode: Asynchronous
// USART Baud Rate: 19200
UCSRA=0x00;
UCSRB=0x18;
UCSRC=0x86;
UBRRH=0x00;
UBRRL=0x26;
// Analog Comparator initialization
// Analog Comparator: Off
// Analog Comparator Input Capture by Timer/Counter 1: Off
ACSR=0x80;
SFIOR=0x00;
// ADC initialization
// ADC Clock frequency: 93.750 kHz
// ADC Voltage Reference: AVCC pin
ADMUX=FIRST_ADC_INPUT | (ADC_VREF_TYPE & 0xff);
ADCSRA=0xCF;
// SPI initialization
// SPI disabled
SPCR=0x00;
// TWI initialization
// TWI disabled
TWCR=0x00;
// Global enable interrupts
#asm("sei")
while (1)
{
if(kbhit()){cek[0]=getchar();if(cek[0]==0x55){delay_ms(10);
if(kbhit()){cek[1]=getchar();if(cek[1]==0x01){
if(kbhit()){cek[2]=getchar();if(cek[2]==0xda){
if(kbhit()){cek[3]=getchar();if(cek[3]==0xd0){adc1();
}}
}
if(cek[2]==0xdb){if(kbhit()){cek[3]=getchar();if(cek[3]!=0xcf){printf("sa(d0)lah");}if(cek[3]==0xcf){adc2();
}}
}
}
}}
}}
}
}
Tidak ada komentar:
Posting Komentar