Selasa, 21 Oktober 2014

/*****************************************************
Chip type               : ATmega8
AVR Core Clock frequency: 8.000000 MHz
Data Stack size         : 256
*****************************************************/

#include <mega8.h>
#include <stdio.h>
#include <delay.h>
#include <stdlib.h>
#include <string.h>
#include "port.h"
#include "adc.h"
#include "ext_interupt.h"
#include "timer.h"
#include "usart.h"

eeprom float FLOW_CONS;
eeprom float FLOW_OFFSET;
eeprom float data_akumulasi;


volatile unsigned char data_command;

volatile unsigned char cmd_cons[4];
volatile unsigned char cmd_offset[4];
volatile float cmd_cons_float;
volatile float cmd_offset_float;

volatile float load_eeprom_flow_cons;
volatile float load_eeprom_flow_offset;

volatile unsigned char commandType=0;
volatile unsigned char tempCommandType=0;

volatile float data_real;
volatile float data_flow;
volatile float data_akumulasi_sebelumnya;
volatile float data_baca;

volatile int cnt=0;
 
int count=0;
unsigned int blink_power=0;
unsigned char simpan=0;

interrupt [TIM0_OVF] void timer0_ovf_isr(void)
{  
    TCNT0=0x9F;
    blink_power++;
     
   
       
    if(adc_data[0] != 0)
    {
        count++;
        simpan=1;
       
       
        if(count==10000)
        {  
            data_flow = data_flow + data_real;
            count = 0;
                 
        }
   
   
    }
   
 
    if(blink_power==5000)
    {  
        blink_power=0;
        LED_POWER=~LED_POWER;
    }  
   
}  





void main(void)
{
    port_init();
    usart_init();  
    timer_init();
    adc_init();
   
    load_eeprom_flow_cons   = FLOW_CONS;
    load_eeprom_flow_offset = FLOW_OFFSET;

 
while (1)
{

    adc_read();
    data_real=((float)sensor_flow*load_eeprom_flow_cons)/60;

      if(ext_interupt==1)
      {  
            data_akumulasi_sebelumnya = data_akumulasi;                                                                                                  
            data_akumulasi = data_akumulasi_sebelumnya + data_flow;
           
            LED_ISI_EEPROM=1;
            ext_interupt=0;
      }
   
         
     if(kbhit()==1)
      {
     
        data_command = getchar();
 
        switch(cnt)
        {
        case 0:
                if(data_command==0x23)
                    cnt++;              
        break;
         

        case 1:
                if(data_command==0x38)
                {
                    cnt++;    
                }
                else if(data_command==0x23)
                {
                    cnt=1;
                }
                else
                {
                    cnt=0;
                }  
        break;

        case 2:
                if(data_command==0x47)
                {
                    cnt++;
                }
                else if(data_command==0x38)
                {
                    cnt=2;
                }
                else if(data_command==0x23)
                {
                    cnt=1;
                }
                else if(data_command==0x02)
                {
                    cmd_cons[0]=getchar();
                    cmd_cons[1]=getchar();
                    cmd_cons[2]=getchar();
                    cmd_cons[3]=getchar();
                    cmd_cons_float= *((float*)(&cmd_cons));
                    FLOW_CONS=cmd_cons_float;

                    TRIGER_MAX_485=1;
                    printf("cmd_cons_float= %.2f\r",cmd_cons_float);
                    delay_ms(100);
                    TRIGER_MAX_485=0;
                }
                else if(data_command==0x03)
                {
                    cmd_offset[0]=getchar();
                    cmd_offset[1]=getchar();
                    cmd_offset[2]=getchar();
                    cmd_offset[3]=getchar();
                    cmd_offset_float= *((float*)(&cmd_cons));
                    FLOW_OFFSET=cmd_offset_float;

                    TRIGER_MAX_485=1;
                    printf("cmd_offset_float= %.2f\r",cmd_offset_float);
                    delay_ms(100);
                    TRIGER_MAX_485=0;
                }
                else
                {
                    cnt=0;
                }
        break;

        case 3:
                if(data_command==0x45)
                {
                    cnt++;
                }
                else if(data_command==0x47)
                {
                    cnt=3;
                }
                else if(data_command==0x38)
                {
                    cnt=2;
                }
                else if(data_command==0x23)
                {
                    cnt=1;
                }
                else
                {
                    cnt=0;
                }
        break;

        case 4:
                if(data_command==0x54 )
                {
                    cnt++;
                    tempCommandType=1;
                }
                else if(data_command==0x45)
                {
                    cnt=4;
                }
                else if(data_command==0x47)
                {
                    cnt=3;
                }
                else if(data_command==0x38)
                {
                    cnt=2;
                }
                else if(data_command==0x23)
                {
                    cnt=1;
                }
                else
                {
                    cnt=0;        
                }
        break;

        case 5:
                if(data_command==0x0D && tempCommandType==1)
                {
                    commandType=1;
                }
                else if(data_command==0x0E)
                {
                    commandType=2;
                }
                else if(data_command==0x0F)
                {
                    commandType=3;
                }
                else if(data_command==0x54)
                {
                    cnt=5;
                }
                else if(data_command==0x45)
                {
                    cnt=4;
                }
                else if(data_command==0x47)
                {
                    cnt=3;
                }
                else if(data_command==0x38)
                {
                    cnt=2;
                }
                else if(data_command==0x23)
                {
                    cnt=1;
                }
                else
                {
                    cnt=0;
                }    
        break;      
        }  
                           
     
        if(commandType==1)
        { //baca Flow
            TRIGER_MAX_485=1;
           
            data_baca = data_akumulasi;
           
            printf("Data_baca= %.3f Data_flow= %.3f\r",data_baca,data_flow);
            delay_ms(10);
            LED_DATA =~ LED_DATA;
            commandType=0;
            tempCommandType=0;
            cnt=0;
            LED_ISI_EEPROM=0;
            TRIGER_MAX_485=0;
     
         }
       
        // commandType =2 untuk membuat data_akumulasi=0;
        else if(commandType==2)
        {
            TRIGER_MAX_485=1;
            LED_DATA =~ LED_DATA;

            commandType=0;
            tempCommandType=0;
            cnt=0;
            data_akumulasi=0;
            TRIGER_MAX_485=0;
        }  
       
        // commandType =3 untuk melihat data eeprom konstanta;
        else if(commandType==3)
        {  
            TRIGER_MAX_485=1;
            load_eeprom_flow_cons   = FLOW_CONS;
            load_eeprom_flow_offset = FLOW_OFFSET;
                     
            printf("flow_cons= %.3f flow_offset=
%.3f\r",load_eeprom_flow_cons,load_eeprom_flow_offset);
            delay_ms(100);
            LED_DATA =~ LED_DATA;
            commandType=0;
            tempCommandType=0;
            cnt=0;
            LED_ISI_EEPROM=0;
            TRIGER_MAX_485=0;
        }

       }
       
     
      }
}

Senin, 29 September 2014

/*****************************************************
This program was produced by the
CodeWizardAVR V2.05.0 Professional
Automatic Program Generator
© Copyright 1998-2010 Pavel Haiduc, HP InfoTech s.r.l.
http://www.hpinfotech.com

Project :
Version :
Date    : 9/29/2014
Author  :
Company :
Comments:


Chip type               : ATmega32
Program type            : Application
AVR Core Clock frequency: 12.000000 MHz
Memory model            : Small
External RAM size       : 0
Data Stack size         : 512
*****************************************************/

#include <mega8.h>
#include <stdio.h>
#include <delay.h>
#include <stdlib.h>
#include <string.h>

float sensor1,sensor2;
char *suhu,*suhu2;
unsigned char data[14];
unsigned char crc,mon;
int i;
//unsigned char cek[4];

   int cnt=0;
   unsigned char dataq;  
   unsigned char tempCommandType=0;
   unsigned char commandType=0;

// Standard Input/Output functions
#include <stdio.h>

#define FIRST_ADC_INPUT 0
#define LAST_ADC_INPUT 1
unsigned int adc_data[LAST_ADC_INPUT-FIRST_ADC_INPUT+1];
#define ADC_VREF_TYPE 0x40




// ADC interrupt service routine
// with auto input scanning
interrupt [ADC_INT] void adc_isr(void)
{
static unsigned char input_index=0;
// Read the AD conversion result
adc_data[input_index]=ADCW;
// Select next ADC input
if (++input_index > (LAST_ADC_INPUT-FIRST_ADC_INPUT))
   input_index=0;
ADMUX=(FIRST_ADC_INPUT | (ADC_VREF_TYPE & 0xff))+input_index;
// Delay needed for the stabilization of the ADC input voltage
delay_us(10);
// Start the AD conversion
ADCSRA|=0x40;
}

// Declare your global variables here
unsigned char kbhit(void){
//return nonzero if char waiting  polled version
unsigned char b;

  b=0;
  if(UCSRA & (1<<RXC))
  { b=1;
    PORTB ^=(1<<PORTB0);
  }
  return b;
}

void adc1(void)
    {
    sensor1=((float) adc_data[0])/10.24f;
    suhu=(char*)&sensor1; 
    //printf("%.2f",sensor1);
    crc=0;
    data[0]=0xAA;
    data[1]=0x01;
    data[2]=0xDA;
    data[3]=suhu[0];
    data[4]=suhu[1];
    data[5]=suhu[2];
    data[6]=suhu[3];
    data[7]=0x00;
    data[8]=0x00;
    data[9]=0x00;
    data[10]=0x00;
    data[11]=0x00;
    data[12]=0x00;
    data[13]=0x00; 
   
    for(i=0;i<14;i++)
    {
    crc=crc+data[i];
    mon=256-crc;      
    };
    
    putchar(data[0]);
    putchar(data[1]);
    putchar(data[2]);
    putchar(data[3]);
    putchar(data[4]);
    putchar(data[5]);
    putchar(data[6]);
    putchar(data[7]);
    putchar(data[8]);
    putchar(data[9]);
    putchar(data[10]);
    putchar(data[11]);
    putchar(data[12]);
    putchar(data[13]);
    putchar(mon); 
    
   //printf("%.2f",sensor1);
   }  
  
void adc2(void)
    {
    sensor2=((float) adc_data[1])/2.8444f;
    suhu2=(char*)&sensor2; 
    //printf("%.2f",sensor2);
    crc=0;
    data[0]=0xAA;
    data[1]=0x01;
    data[2]=0xDB;
    data[3]=suhu2[0];
    data[4]=suhu2[1];
    data[5]=suhu2[2];
    data[6]=suhu2[3];
    data[7]=0x00;
    data[8]=0x00;
    data[9]=0x00;
    data[10]=0x00;
    data[11]=0x00;
    data[12]=0x00;
    data[13]=0x00; 
   
    for(i=0;i<14;i++)
    {
    crc=crc+data[i];
    mon=256-crc;      
    };
   
    putchar(data[0]);
    putchar(data[1]);
    putchar(data[2]);
    putchar(data[3]);
    putchar(data[4]);
    putchar(data[5]);
    putchar(data[6]);
    putchar(data[7]);
    putchar(data[8]);
    putchar(data[9]);
    putchar(data[10]);
    putchar(data[11]);
    putchar(data[12]);
    putchar(data[13]);
    putchar(mon);  }

void main(void)
{
// Declare your local variables here

// Input/Output Ports initialization
// Port B initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=Out
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=0
PORTB=0x00;
DDRB=0x01;

// Port C initialization
// Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTC=0x00;
DDRC=0x00;

// Port D initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTD=0x00;
DDRD=0x00;

// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: 7.813 kHz
TCCR0=0x00;
TCNT0=0x00;

// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: 7.813 kHz
// Mode: CTC top=OCR1A
// OC1A output: Discon.
// OC1B output: Discon.
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: On
// Compare B Match Interrupt: Off
TCCR1A=0x00;
TCCR1B=0x00;
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;


// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=0xFF
// OC2 output: Disconnected
ASSR=0x00;
TCCR2=0x00;
TCNT2=0x00;
OCR2=0x00;

// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
MCUCR=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=0x00;

// USART initialization
// Communication Parameters: 8 Data, 1 Stop, No Parity
// USART Receiver: On
// USART Transmitter: On
// USART Mode: Asynchronous
// USART Baud Rate: 38400
UCSRA=0x00;
UCSRB=0x18;
UCSRC=0x86;
UBRRH=0x00;
UBRRL=0x0C;

// Analog Comparator initialization
// Analog Comparator: Off
// Analog Comparator Input Capture by Timer/Counter 1: Off
ACSR=0x80;
SFIOR=0x00;

// ADC initialization
// ADC disabled
ADCSRA=0x00;

// SPI initialization
// SPI disabled
SPCR=0x00;

// TWI initialization
// TWI disabled
TWCR=0x00;

// Global enable interrupts
#asm("sei")




while (1)
      {    
     
      while(kbhit()==0);
   dataq=getchar();
  
   switch(cnt)
   { case 0:  if(dataq==0x55)
                 cnt++;
              break;
     case 1: 
              if(dataq==0x01)
                  cnt++;
              else if(dataq==0x55)
                  cnt=1;
              else
                  cnt=0;   
              break;
     case 2:  if(dataq==0xDa)
              { cnt++;
                tempCommandType=1;
              }   
              else if(dataq==0xdb)
              { cnt++;
                tempCommandType=2;
              }              
              else if(dataq==0x55)
              {  cnt=1;                
              }
              else
              {   cnt=0;                 
              }
              break;
     case 3:  if(dataq==0xD0 && tempCommandType==1)
                 commandType=1;
              else if(dataq==0xCf && tempCommandType==2)
                 commandType=2;  
              else if(dataq==0x55)
                 cnt=1;
              else
                 cnt=0;
              break;     
                             
                                          
   }
  
  
   if(commandType==1)
   { //baca winspeed
      adc1();
      commandType=0;
      cnt=0;
   }               
   else if(commandType==2)
   { //baca windir
      adc2();
      commandType=0;
      cnt=0;
   }

     
      /*
      if(kbhit()){cek[0]=getchar();if(cek[0]==0x55){delay_ms(10);
      if(kbhit()){cek[1]=getchar();if(cek[1]==0x01){
      if(kbhit()){cek[2]=getchar();if(cek[2]==0xda){
      if(kbhit()){cek[3]=getchar();if(cek[3]==0xd0){adc1();
      }}
      }
      if(cek[2]==0xdb){if(kbhit()){cek[3]=getchar();if(cek[3]==0xcf){adc2();
      }}
      }
      }
     
      }}
     

      }}*/

      }       
}
/*****************************************************
This program was produced by the
CodeWizardAVR V2.05.0 Professional
Automatic Program Generator
© Copyright 1998-2010 Pavel Haiduc, HP InfoTech s.r.l.
http://www.hpinfotech.com

Project :
Version :
Date    : 9/29/2014
Author  :
Company :
Comments:


Chip type               : ATmega32
Program type            : Application
AVR Core Clock frequency: 12.000000 MHz
Memory model            : Small
External RAM size       : 0
Data Stack size         : 512
*****************************************************/

#include <mega32.h>
#include <stdio.h>
#include <delay.h>
#include <stdlib.h>
#include <string.h>

float sensor1,sensor2;
char *suhu,*suhu2;
unsigned char data[14];
unsigned char crc,mon;
int i;
unsigned char cek[4];

// Standard Input/Output functions
#include <stdio.h>

#define FIRST_ADC_INPUT 0
#define LAST_ADC_INPUT 1
unsigned int adc_data[LAST_ADC_INPUT-FIRST_ADC_INPUT+1];
#define ADC_VREF_TYPE 0x40

// ADC interrupt service routine
// with auto input scanning
interrupt [ADC_INT] void adc_isr(void)
{
static unsigned char input_index=0;
// Read the AD conversion result
adc_data[input_index]=ADCW;
// Select next ADC input
if (++input_index > (LAST_ADC_INPUT-FIRST_ADC_INPUT))
   input_index=0;
ADMUX=(FIRST_ADC_INPUT | (ADC_VREF_TYPE & 0xff))+input_index;
// Delay needed for the stabilization of the ADC input voltage
delay_us(10);
// Start the AD conversion
ADCSRA|=0x40;
}

// Declare your global variables here
unsigned char kbhit(void){
//return nonzero if char waiting  polled version
unsigned char b;

  b=0;
  if(UCSRA & (1<<RXC)) b=1;
  return b;
}

void adc1(void)
    {
    sensor1=adc_data[0]/10;
    suhu=(char*)&sensor1; 
    //printf("%.2f",sensor1);
    crc=0;
    data[0]=0xAA;
    data[1]=0x01;
    data[2]=0xDA;
    data[3]=suhu[0];
    data[4]=suhu[1];
    data[5]=suhu[2];
    data[6]=suhu[3];
    data[7]=0x00;
    data[8]=0x00;
    data[9]=0x00;
    data[10]=0x00;
    data[11]=0x00;
    data[12]=0x00;
    data[13]=0x00; 
   
    for(i=0;i<14;i++)
    {
    crc=crc+data[i];
    mon=256-crc;      
    };
    
    putchar(data[0]);
    putchar(data[1]);
    putchar(data[2]);
    putchar(data[3]);
    putchar(data[4]);
    putchar(data[5]);
    putchar(data[6]);
    putchar(data[7]);
    putchar(data[8]);
    putchar(data[9]);
    putchar(data[10]);
    putchar(data[11]);
    putchar(data[12]);
    putchar(data[13]);
    putchar(mon); 
    
   //printf("%.2f",sensor1);
   }  
  
void adc2(void)
    {
    sensor2=adc_data[1]/3;
    suhu2=(char*)&sensor2; 
    //printf("%.2f",sensor2);
    crc=0;
    data[0]=0xAA;
    data[1]=0x01;
    data[2]=0xDB;
    data[3]=suhu2[0];
    data[4]=suhu2[1];
    data[5]=suhu2[2];
    data[6]=suhu2[3];
    data[7]=0x00;
    data[8]=0x00;
    data[9]=0x00;
    data[10]=0x00;
    data[11]=0x00;
    data[12]=0x00;
    data[13]=0x00; 
   
    for(i=0;i<14;i++)
    {
    crc=crc+data[i];
    mon=256-crc;      
    };
   
    putchar(data[0]);
    putchar(data[1]);
    putchar(data[2]);
    putchar(data[3]);
    putchar(data[4]);
    putchar(data[5]);
    putchar(data[6]);
    putchar(data[7]);
    putchar(data[8]);
    putchar(data[9]);
    putchar(data[10]);
    putchar(data[11]);
    putchar(data[12]);
    putchar(data[13]);
    putchar(mon);  }

void main(void)
{
// Declare your local variables here

// Input/Output Ports initialization
// Port A initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTA=0x00;
DDRA=0x00;

// Port B initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTB=0x00;
DDRB=0x00;

// Port C initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTC=0x00;
DDRC=0x00;

// Port D initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTD=0x00;
DDRD=0x00;

// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=0xFF
// OC0 output: Disconnected
TCCR0=0x00;
TCNT0=0x00;
OCR0=0x00;

// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer1 Stopped
// Mode: Normal top=0xFFFF
// OC1A output: Discon.
// OC1B output: Discon.
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
TCCR1A=0x00;
TCCR1B=0x00;
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;

// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=0xFF
// OC2 output: Disconnected
ASSR=0x00;
TCCR2=0x00;
TCNT2=0x00;
OCR2=0x00;

// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
MCUCR=0x00;
MCUCSR=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=0x00;

// USART initialization
// Communication Parameters: 8 Data, 1 Stop, No Parity
// USART Receiver: On
// USART Transmitter: On
// USART Mode: Asynchronous
// USART Baud Rate: 19200
UCSRA=0x00;
UCSRB=0x18;
UCSRC=0x86;
UBRRH=0x00;
UBRRL=0x26;

// Analog Comparator initialization
// Analog Comparator: Off
// Analog Comparator Input Capture by Timer/Counter 1: Off
ACSR=0x80;
SFIOR=0x00;

// ADC initialization
// ADC Clock frequency: 93.750 kHz
// ADC Voltage Reference: AVCC pin
ADMUX=FIRST_ADC_INPUT | (ADC_VREF_TYPE & 0xff);
ADCSRA=0xCF;

// SPI initialization
// SPI disabled
SPCR=0x00;

// TWI initialization
// TWI disabled
TWCR=0x00;

// Global enable interrupts
#asm("sei")

while (1)
      {
      if(kbhit()){cek[0]=getchar();if(cek[0]==0x55){delay_ms(10);
      if(kbhit()){cek[1]=getchar();if(cek[1]==0x01){
      if(kbhit()){cek[2]=getchar();if(cek[2]==0xda){
      if(kbhit()){cek[3]=getchar();if(cek[3]==0xd0){adc1();
      }}
      }
      if(cek[2]==0xdb){if(kbhit()){cek[3]=getchar();if(cek[3]!=0xcf){printf("sa(d0)lah");}if(cek[3]==0xcf){adc2();
      }}
      }
      }
     
      }}
     

      }}

      }  
}

Minggu, 25 Mei 2014

acr120.h //acr2

#ifndef _ACR120_H
#define _ACR120_H

#include <termios.h>

#define ACR120_SUCCESS  0
#define ACR120_ERROR   -1

#define ACR120_REGISTER_STATIONID  0x4
#define ACR120_REGISTER_PROTOCOL   0x5
#define ACR120_REGISTER_BAUDRATE   0x6
#define ACR120_REGISTER_LED        0x7
#define ACR120_REGISTER_BUZZER     0x8

typedef enum {
    MIFARE_KEY_AA =0,
    MIFARE_KEY_BB,
    MIFARE_KEY_FF
} mifare_key;

struct acr120_conn {
    int fd;
    int error;
    unsigned char proto_mode;
};

extern int acr120_errno;

const char* acr120_strerror(void);



int acr120_open(const char *dev, unsigned char sid, speed_t speed);

int acr120_close(int fd);

int acr120_reset(int fd, unsigned char sid, int reply, int timeout);

int acr120_get_id(int fd, unsigned char *id, int timeout);

int acr120_select(int fd, unsigned char sid, unsigned int *uid, int timeout);

int acr120_login(int fd, unsigned char sid, unsigned char sector,
                mifare_key type, unsigned char *key, int timeout);
               
int acr120_write_block(int fd, unsigned char sid, unsigned char block,
                unsigned char *data, int timeout);
               
int acr120_write_value(int fd, unsigned char sid, unsigned char block,
                unsigned int value, int timeout);

int acr120_write_register(int fd, unsigned char sid, unsigned char reg,
                unsigned char value, int timeout);

int acr120_read_block(int fd, unsigned char sid, unsigned char block,
                unsigned char *data, int timeout);
               
int acr120_read_value(int fd, unsigned char sid, unsigned char block,
                unsigned int *value, int timeout);

int acr120_read_register(int fd, unsigned char sid, unsigned char reg,
                unsigned char *value, int timeout);

int acr120_copy_block(int fd, unsigned char sid, unsigned char source,
                unsigned char dest, int timeout);
               
int acr120_inc_value(int fd, unsigned char sid, unsigned char block,
                unsigned int inc, int timeout);
               
int acr120_dec_value(int fd, unsigned char sid, unsigned char block,
                unsigned int dec, int timeout);
               
int acr120_power_on(int fd, unsigned char sid, int timeout);

int acr120_power_off(int fd, unsigned char sid, int timeout);

#endif

acr120.c //acr

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/select.h>
#include <sys/time.h>
#include <unistd.h>
#include <fcntl.h>
#include <termios.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "acr120.h"

#define STX 0x2
#define ETX 0x3

unsigned char *nib;

int acr120_errno;
static int acr120_proto_mode;
static struct termios old;

static void dec2nibble(unsigned int, unsigned char*);
static void nibble2dec(unsigned int*,unsigned char*);
static int check_bin_error(const unsigned char*, size_t);
static int check_ascii_error(const unsigned char*, size_t);
static int acr120_timeout(int, int);

static const char const *acr120_error[] = {
    "success", // 1
    "open device failure", // 2
    "close device failure",// 3
    "device setting failure",// 4
    "write device failure",// 5
    "read device failure",//6
    "select device failure",//7
    "operation timeout",//8
    "no TAG",//9
    "no value block",//10      
    "login fail, key wrong",//11
    "invalid key format (stored key)",//12
    "read failure",//13
    "unable to read after write",//14
    "read after write error",//15
    "write failure",//16
    "unable to read after increment",//17
    "increment failure",//18
    "unable to read after decrement",//19
    "decrement failure",//20
    "empty value decrement",//21
    "unable to read after copy",//22
    "copy failure",//23
    "data error"//24
};

static void dec2nibble(unsigned int value, unsigned char *nibble)
{
    nibble[3] = value & 0xff;
    nibble[2] = value >> 8 & 0xff;
    nibble[1] = value >> 16 & 0xff;
    nibble[0] = value >> 24 & 0xff;
}


static void nibble2dec(unsigned int *val,unsigned char *nibble)
{


int valoo = (nibble[3] & 0xff) | ((nibble[2] & 0xff) << 8) | ((nibble[1] & 0xff) << 16) | ((nibble[0] & 0xff) << 24);

*val = (nibble[0] & 0xff) | ((nibble[1] & 0xff) << 8) | ((nibble[2] & 0xff) << 16) | ((nibble[3] & 0xff) << 24);


printf("id *= %d\n",*val);
printf("id = %d\n",valoo);


}

static int check_bin_error(const unsigned char *ans, size_t len)
{
    unsigned char check = 0;
    int i, nc = len - 2 * sizeof(unsigned char );
    size_t bytes = 0;

    for (i = 1; i < nc; i++)
        check ^= ans[i];
    return (check == ans[nc]) ? 0 : 1;
}

static int check_ascii_error(const unsigned char *ans, size_t len)
{
    return (ans[len - 2] == 0xd && ans[len -1] == 0xa) ? 0 : 1;
}

const char* acr120_strerror(void)
{
    return acr120_error[acr120_errno - 1];
}

inline int acr120_open(const char *dev, unsigned char sid, speed_t speed)
{
    int fd, ret;
    unsigned char cmd[8], ans[6], val, check = 0;
    size_t bytes = 0;
    struct termios opt;

   // fd = open(dev, O_RDWR | O_NOCTTY, 0644);
   fd = open(dev, O_RDWR | O_NOCTTY, 0110);
    if (fd == -1) {
        acr120_errno = 2;
        return ACR120_ERROR;
    }

    ret = tcgetattr(fd, &opt);
    if (ret == -1) {
        close(fd);
        acr120_errno = 4;
        return ACR120_ERROR;
    }

    /* save previous setting to restore on close */
    memcpy(&old, &opt, sizeof(struct termios));

    cfsetispeed(&opt, speed);
    cfsetospeed(&opt, speed);
    /* set to canonical mode */
    opt.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);
    /* disable flow control both input and output */
    opt.c_iflag &= ~(IXON | IXOFF);
    /* disable CR-NL or NL-CR translation both input and output */
    opt.c_iflag &= ~(INLCR | ICRNL);
    opt.c_oflag &= ~(ONLCR | OCRNL);
    ret = tcsetattr(fd, TCSANOW, &opt);
    if (ret == -1) {
        close(fd);
        acr120_errno = 4;
        return ACR120_ERROR;
    }

    /* probe in ASCII mode */
    snprintf((char *) cmd, 5 * sizeof(unsigned char), "re%.2x",
             ACR120_REGISTER_PROTOCOL);
    ret = write(fd, cmd, 4 * sizeof(unsigned char));
    if (ret <= 0) {
        acr120_close(fd);
        acr120_errno = 5;
        return ACR120_ERROR;
    }

    ret = acr120_timeout(fd, 100);
    if (ret == ACR120_ERROR) {
        if (acr120_errno != 8) {
            close(fd);
            return ret;unsigned char cmd[8], ans[6], val, check = 0;
    size_t bytes = 0;
        }
        goto bin;
    } else {
          while (bytes < 4 * sizeof(unsigned char)) {
              ret = read(fd, ans + bytes, 4 * sizeof(unsigned char) - bytes);
              if (ret <= 0) {
                  close(fd);
                  acr120_errno = 6;
                  return ACR120_ERROR;
              }
              bytes += ret;
          }
          if (check_ascii_error(ans, 4)) {
              acr120_errno = 24;
              goto bin;
          }
          ans[2] = 0;
          sscanf((char*) ans, "%x", (unsigned int*) &val);
          goto done;
    }

bin:
    /* read protocol register to obtain protocol mode */
    cmd[0] = STX;
    cmd[1] = sid;
    cmd[2] = 0x3;
    cmd[3] = 'r';
    cmd[4] = 'e';
    cmd[5] = ACR120_REGISTER_PROTOCOL;
    cmd[6] = cmd[1] ^ cmd[2] ^ cmd[3] ^ cmd[4] ^ cmd[5];
    cmd[7] = ETX;

    /* probe in binary mode */
    ret = write(fd, cmd, sizeof(cmd));
    if (ret <= 0) {
        acr120_close(fd);
        acr120_errno = 5;
        return ACR120_ERROR;
    }

    bytes = 0;
    while (bytes < sizeof(ans)) {
        ret = acr120_timeout(fd, 100);
        if (ret == ACR120_ERROR) {
            close(fd);
            return ret;
        }
        ret = read(fd, ans + bytes, sizeof(ans) - bytes);
//printf("%x %x %x %x %x %x %x %x %x %x \n",ans[0],ans[1],ans[2],ans[3],ans[4],ans[5],ans[6],ans[7],ans[8],ans[9]);

        if (ret <= 0) {
            acr120_close(fd);
            acr120_errno = 6;

            return ACR120_ERROR;
        }
        bytes += ret;
        /* eventually there are no error code satisfied for
           reading register value, only check here for
           compability */
        if (bytes > 4 && !check) {
            switch (ans[3]) {
                case 'N':
                    acr120_close(fd);
                    acr120_errno = 9;
                    return ACR120_ERROR;
                case 'I':
                    acr120_close(fd);
                    acr120_errno = 10;
                    return ACR120_ERROR;
                case 'F':
                    acr120_close(fd);
                    acr120_errno = 13;
                    return ACR120_ERROR;
            }
            check ^= 1;
        }
    }

    if (check_bin_error(ans, sizeof(ans))) {
        acr120_close(fd);
        acr120_errno = 24;
        return ACR120_ERROR;
    }
    val = ans[3];

done:
    /* set protocol mode */
    acr120_proto_mode = val >> 1 & 0x1;
    acr120_errno = 1;
    return fd;
}

int acr120_close(int fd)
{
    int ret;

    /* restore previous setting */
    tcsetattr(fd, TCSANOW, &old);
    ret = close(fd);
    if (ret == -1) {
        acr120_errno = 3;
        return ACR120_ERROR;
    }
    acr120_errno = 1;
    return ACR120_SUCCESS;
}          

static int acr120_timeout(int fd, int timeout)
{
    int ret;
    fd_set rset;
    struct timeval val = { .tv_sec = 0, .tv_usec = 1000 * timeout };

    FD_ZERO(&rset);
    FD_SET(fd, &rset);
    ret = select(fd + 1, &rset, NULL, NULL, &val);
    if (ret == 0) {
        acr120_errno = 8;
        return ACR120_ERROR;
    }
    if (ret == -1) {
        acr120_errno = 7;
        return ACR120_ERROR;
    }
    if (FD_ISSET(fd, &rset)) {
        acr120_errno = 1;
        return ACR120_SUCCESS;
    }
    /* should never reach here */
    acr120_errno = 7;
    return ACR120_ERROR;
}

int acr120_reset(int fd, unsigned char sid, int reply, int timeout)
{
    int ret;
    unsigned char cmd[6], ans[12];
    size_t bytes = 0, nw, nr;

    if (acr120_proto_mode) {
        cmd[0] = STX;
        cmd[1] = sid;
        cmd[2] = 0x1;
        cmd[3] = 'x';
        cmd[4] = cmd[1] ^ cmd[2] ^ cmd[3];
        cmd[5] = ETX;
        nw = sizeof(cmd);
        /* no answer on binary mode */
        nr = 0;
    } else {
        cmd[0] = 'x';
        nw = sizeof(unsigned char);unsigned int *val,
        nr = reply ? sizeof(ans) : 0;
    }

    ret = write(fd, cmd, nw);
    if (ret <= 0) {
        acr120_errno = 5;
        return ACR120_ERROR;
    }

    while (bytes < nr) {
        if (timeout) {
            ret = acr120_timeout(fd, timeout);
            if (ret == ACR120_ERROR)
                return ret;
        }
       
        ret = read(fd, ans + bytes, nr - bytes);
        if (ret <= 0) {
            acr120_errno = 6;
            return ACR120_ERROR;
        }
        bytes += ret;
    }

    if (!acr120_proto_mode && reply) {
        if (check_ascii_error(ans, 12)) {
            acr120_errno = 24;
            return ACR120_ERROR;
        }
    }
   
    acr120_errno = 1;
    return ACR120_SUCCESS;
}

int acr120_get_id(int fd, unsigned char *id, int timeout)
{
    int ret;
    unsigned char cmd[6], ans[6];
    size_t bytes = 0;

    cmd[0] = STX;
    cmd[1] = 0xff;
    cmd[2] = 0x1;
    cmd[3] = 'g';
    cmd[4] = cmd[1] ^ cmd[2] ^ cmd[3];
    cmd[5] = ETX;

    ret = write(fd, cmd, sizeof(cmd));
    if (ret == -1) {
        acr120_errno = 5;
        return ACR120_ERROR;
    }

    while (bytes < sizeof(ans)) {
        if (timeout) {
            ret = acr120_timeout(fd, timeout);
            if (ret == ACR120_ERROR)
                return ret;
        }
        ret = read(fd, ans + bytes, sizeof(ans) - bytes);

        if (ret == -1) {
            acr120_errno = 6;

            return ACR120_ERROR;
        }
        bytes += ret;
    }

    if (id)
      *id = ans[3];

    acr120_errno = 1;

    return ACR120_SUCCESS;
}

int acr120_select(int fd, unsigned char sid, unsigned int *uid, int timeout)
{
    int ret;
    unsigned char cmd[6], ans[9], uids[4];
    size_t bytes = 0;

    cmd[0] = STX;
    cmd[1] = sid;
    cmd[2] = 0x1;
    cmd[3] = 's';
    cmd[4] = cmd[1] ^ cmd[2] ^ cmd[3];
    cmd[5] = ETX;

    ret = write(fd, cmd, sizeof(cmd));
    if (ret == -1) {
        acr120_errno = 5;
        return ACR120_ERROR;
    }
    while (bytes < sizeof(ans)) {
        if (timeout) {
            ret = acr120_timeout(fd, timeout);
            if (ret == ACR120_ERROR)
                return ret;
        }
        ret = read(fd, ans + bytes, sizeof(ans) - bytes);
        if (ret == -1) {
            acr120_errno = 6;
            return ACR120_ERROR;
        }
        bytes += ret;
        if (bytes > 3) {
            if (ans[3] == 'N') {
                acr120_errno = 9;
                return ACR120_ERROR;
            }
        }
    }


   if (uid){
memcpy(uids, ans + 3, sizeof(uids));
        nibble2dec(uid, uids);
}

    acr120_errno = 1;
    return ACR120_SUCCESS;
}

/*
 * key ff binary sequence: 02 01 04 6c 01 ff 0d 9a 03
 * key aa or bb binary sequence: 02 01 09 6c 01 aa a0 a1 a2 a3 a4 a5 ce 03
 */
int acr120_login(int fd, unsigned char sid, unsigned char sector,
                mifare_key type, unsigned char *key, int timeout)
{
    int ret, i;
    unsigned char cmd[14], ans[6];
    size_t bytes = 0, len;

printf("sector = %x\n",sector);
printf("key= %c\n",&key);
printf("keyType= %x\n",type);
    cmd[0] = STX;
    cmd[1] = sid;
    cmd[3] = 'l';
    cmd[4] = sector;

   if (type == MIFARE_KEY_FF) {
        cmd[2] = 0x04;
        cmd[5] = 0xff;
        cmd[6] = 0xd;
        for (i = 1, cmd[7] = 0; i < 7; i++)
            cmd[7] ^= cmd[i];
        len = 9;


    } else {
        cmd[2] = 9;
        cmd[5] = (type == MIFARE_KEY_AA) ? 0xaa : 0xbb;

        memcpy(cmd + 6, key, 6 * sizeof(unsigned char));
        for (i = 1, cmd[12] = 0; i < 12; i++)
            cmd[12] ^= cmd[i];
        len = 14;
    }

    cmd[len - 1] = ETX;

printf("%x %x %x %c %x %x %x %x %x %x %x %x %x %X\n",cmd[0],cmd[1],cmd[2],cmd[3],cmd[4],cmd[5],cmd[6],cmd[7],cmd[8],cmd[9],cmd[10],cmd[11],cmd[12],cmd[13]);
   
    ret = write(fd, cmd, len);

    if (ret == -1) {

        acr120_errno = 5;

        return ACR120_ERROR;
    }
    while (bytes < sizeof(ans)) {
        if (timeout) {
            ret = acr120_timeout(fd, timeout);
            if (ret == ACR120_ERROR)
                return ret;
        }
        ret = read(fd, ans + bytes, sizeof(ans) - bytes);
        if (ret == -1) {
            acr120_errno = 6;

            return ACR120_ERROR;
        }
printf("%c \n",ans[3]);

        bytes += ret;
        if (bytes > 3) {
            switch (ans[3]) {
                case 'L':
                    acr120_errno = 1;
printf("lOGIN = %s\n",acr120_strerror());
                    return ACR120_SUCCESS;
                case 'N':
                    acr120_errno = 9;


                    return ACR120_ERROR;
                case 'F':
                    acr120_errno = 11;

                    return ACR120_ERROR;
                case 'E':
                    acr120_errno = 12;

                    return ACR120_ERROR;
            }
        }
    }

    acr120_errno = 11;
    return ACR120_ERROR;
}

int acr120_write_block(int fd, unsigned char sid, unsigned char block,
                unsigned char *data, int timeout)
{
    int ret, i;
    unsigned char cmd[23], ans[21];
    size_t bytes = 0;

    cmd[0] = STX;
    cmd[1] = sid;
    cmd[2] = 18;
    cmd[3] = 'w';
    cmd[4] = block;
    memcpy(cmd + 5, data, 16);
    cmd[22] = ETX;

    for (i = 1, cmd[21] = 0; i < 21; i++)
        cmd[21] ^= cmd[i];

    ret = write(fd, cmd, sizeof(cmd));
    if (ret == -1) {
        acr120_errno = 5;
        return ACR120_ERROR;
    }

    while (bytes < sizeof(ans)) {
        if (timeout) {
            ret = acr120_timeout(fd, timeout);
            if (ret == ACR120_ERROR)
                return ret;
        }
        ret = read(fd, ans + bytes, sizeof(ans) - bytes);
        if (ret == -1) {
            acr120_errno = 6;
            return ACR120_ERROR;
        }
        bytes += ret;
        if (bytes > 3) {
            switch (ans[3]) {
                case 'X':
                    acr120_errno = 14;
                    return ACR120_ERROR;
                case 'U':
                    acr120_errno = 15;
                    return ACR120_ERROR;
                case 'N':
                    acr120_errno = 9;
                    return ACR120_ERROR;
                case 'F':
                case 'I':
                    acr120_errno = 16;
                    return ACR120_ERROR;
            }
        }
    }
    acr120_errno = 1;
    return ACR120_SUCCESS;
}

int acr120_write_value(int fd, unsigned char sid, unsigned char block,
                unsigned int value, int timeout)
{
    int ret, i;
    unsigned char cmd[12], data[4], ans[9];
    size_t bytes = 0;

printf("value write = %d \n",value);  

    dec2nibble(value, data);
    cmd[0] = STX;
    cmd[1] = sid;
    cmd[2] = 0x7;
    cmd[3] = 'w';
    cmd[4] = 'v';
    cmd[5] = block;
    cmd[6] = data[0];
    cmd[7] = data[1];
    cmd[8] = data[2];
    cmd[9] = data[3];
    cmd[11] = ETX;

printf("data = %x\n",data);
printf("data write = %x %x %x %x \n",data[0],data[1],data[2],data[3]);
   
printf("cmd_write = %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",cmd[0],cmd[1],cmd[2],cmd[3],cmd[4],cmd[5],cmd[6],cmd[7],cmd[8],cmd[9],cmd[10],cmd[11],cmd[12],cmd[13]);
    for (i = 1, cmd[10] = 0; i < 10; i++)
        cmd[10] ^= cmd[i];

    ret = write(fd, cmd, sizeof(cmd));
    if (ret == -1) {
        acr120_errno = 5;
        return ACR120_ERROR;
    }
   
    while (bytes < sizeof(ans)) {
        if (timeout) {
            ret = acr120_timeout(fd, timeout);
            if (ret == ACR120_ERROR)
                return ret;
        }
        ret = read(fd, ans + bytes, sizeof(ans) - bytes);
        if (ret == -1) {
            acr120_errno = 6;
            return ACR120_ERROR;
        }
        bytes += ret;
        if (bytes > 3) {
            switch (ans[3]) {
                case 'X':
                   acr120_errno = 14;
                   return ACR120_ERROR;
                case 'U':
                    acr120_errno = 15;
                    return ACR120_ERROR;
                case 'N':
                    acr120_errno = 9;
printf("ASIK\n");
                    return ACR120_ERROR;
                case 'F':
                case 'I':
                    acr120_errno = 16;
                    return ACR120_ERROR;
            }
        }
    }
    acr120_errno = 1;
    return ACR120_SUCCESS;
}

int acr120_write_register(int fd, unsigned char sid, unsigned char reg,
                unsigned char value, int timeout)
{
    unsigned char cmd[9], ans[6], check = 0;
    size_t bytes = 0, nr, nw;
    int ret;

    if (acr120_proto_mode) {
        cmd[0] = STX;
        cmd[1] = sid;
        cmd[2] = 0x4;
        cmd[3] = 'w';
        cmd[4] = 'e';
        cmd[5] = reg;
        cmd[6] = value;
        cmd[7] = cmd[1] ^ cmd[2] ^ cmd[3] ^ cmd[4] ^ cmd[5] ^ cmd[6];
        cmd[8] = ETX;
        nw = sizeof(cmd);
        nr = sizeof(ans);
    } else {
        snprintf((char*) cmd, 7 * sizeof(unsigned char),
                 "we%.2x%.2x", reg, value);
        printf("cmd is: %s\n", (char*) cmd);
        nw = 6 * sizeof(unsigned char);
        nr = 4 * sizeof(unsigned char);
    }

    ret = write(fd, cmd, nw);

    if (ret == -1) {
        acr120_errno = 5;
        return ACR120_ERROR;
    }

    while (bytes < nr) {
        if (timeout) {
            ret = acr120_timeout(fd, timeout);
            if (ret == ACR120_ERROR)
                return ret;
        }

        ret = read(fd, ans + bytes, nr - bytes);
        if (ret == -1) {
            acr120_errno = 6;
            return ACR120_ERROR;
        }
       
        bytes += ret;
        if (acr120_proto_mode && bytes > 4 * sizeof(unsigned char) && !check) {
            switch (ans[3]) {
                case 'X':
                    acr120_errno = 14;

                    return ACR120_ERROR;
                case 'U':
                    acr120_errno = 15;

                    return ACR120_ERROR;
                case 'N':
                    acr120_errno = 9;

                    return ACR120_ERROR;
                case 'I':
                    acr120_errno = 16;

                    return ACR120_ERROR;
            }
            check ^= 1;
        }
    }

    if (acr120_proto_mode) {
        if (check_bin_error(ans, sizeof(ans))) {
            acr120_errno = 24;
            return ACR120_ERROR;
        }
    } else {
        if (check_ascii_error(ans, 4)) {
            acr120_errno = 24;
            return ACR120_ERROR;
        }
    }
    acr120_errno = 1;
    return ACR120_SUCCESS;
}

int acr120_read_block(int fd, unsigned char sid, unsigned char block,
                unsigned char *data, int timeout)
{
    int ret;
    unsigned char cmd[7], ans[21];
    size_t bytes = 0;

    cmd[0] = STX;
    cmd[1] = sid;
    cmd[2] = 2;
    cmd[3] = 'r';
    cmd[4] = block;
    cmd[5] = cmd[1] ^ cmd[2] ^ cmd[3] ^ cmd[4];
    cmd[6] = ETX;

    ret = write(fd, cmd, sizeof(cmd));
    if (ret == -1) {
        acr120_errno = 5;
        return ACR120_ERROR;
    }
    while (bytes < sizeof(ans)) {
        if (timeout) {
            ret = acr120_timeout(fd, timeout);
            if (ret == ACR120_ERROR )
                return ret;
        }
        ret = read(fd, ans + bytes, sizeof(ans) - bytes);
        if (ret == -1) {
            acr120_errno = 6;
            return ACR120_ERROR;
        }
        bytes += ret;
        if (bytes > 3) {
            switch (ans[3]) {
                case 'N':
                    acr120_errno = 9;
                    return ACR120_ERROR;
                case 'F':
                    acr120_errno = 13;
                    return ACR120_ERROR;
            }
        }
    }
    if (data)
        memcpy(data, ans + 3, 16);
    acr120_errno = 1;
    return ACR120_SUCCESS;
}

int acr120_read_value(int fd, unsigned char sid, unsigned char block,
                unsigned int *value, int timeout)
{
    int ret;
    unsigned char cmd[8], ans[9], data[4];
    size_t bytes = 0;
   
    cmd[0] = STX;
    cmd[1] = sid;
    cmd[2] = 0x3;
    cmd[3] = 'r';
    cmd[4] = 'v';
    cmd[5] = block;
    cmd[6] = cmd[1] ^ cmd[2] ^ cmd[3] ^ cmd[4] ^ cmd[5];

    cmd[7] = ETX;

printf("%x %x %x %c %c %x %x %x\n",cmd[0],cmd[1],cmd[2],cmd[3],cmd[4],cmd[5],cmd[6],cmd[7]);

    ret = write(fd, cmd, sizeof(cmd));
    if (ret == -1) {
        acr120_errno = 5;
        return ACR120_ERROR;
    }
   
    while (bytes < sizeof(ans)) {
        if (timeout) {
            ret = acr120_timeout(fd, timeout);
            if (ret == ACR120_ERROR)
                return ret;
        }
        ret = read(fd, ans + bytes, sizeof(ans) - bytes);

        if (ret == -1) {
            acr120_errno = 6;
            return ACR120_ERROR;
        }
        bytes += ret;

        if (bytes > 3) {
            switch (ans[3]) {
                case 'N':
                    acr120_errno = 9;
                    return ACR120_ERROR;
                case 'I':
                    acr120_errno = 10;
                    return ACR120_ERROR;
                case 'F':
                    acr120_errno = 13;
                    return ACR120_ERROR;
            }
        }
    }

printf("%i\n",ret);
printf("%c %c %c\n",ans[3],cmd[3],cmd[4]);
printf("%x %x %x %x %x %x %x %x %x %x\n",cmd[0],cmd[1],cmd[2],cmd[3],cmd[4],cmd[5],cmd[6],cmd[7],cmd[8],cmd[9]);
    if (value) {
        memcpy(data, ans + 3, sizeof(data));  
        nibble2dec(value, data);

    }
    acr120_errno = 1;
    return ACR120_SUCCESS;
}

int acr120_read_register(int fd, unsigned char sid, unsigned char reg,
                unsigned char *value, int timeout)
{
    int ret;
    unsigned char cmd[8], ans[6], check = 0;
    size_t bytes = 0, nw, nr;

    if (acr120_proto_mode) {
        cmd[0] = STX;
        cmd[1] = sid;
        cmd[2] = 0x3;
        cmd[3] = 'r';
        cmd[4] = 'e';
        cmd[5] = reg;
        cmd[6] = cmd[1] ^ cmd[2] ^ cmd[3] ^ cmd[4] ^ cmd[5];
        cmd[7] = ETX;
        nw = sizeof(cmd);
        nr = sizeof(ans);
    } else {
        snprintf((char *) cmd, 5 * sizeof(unsigned char), "re%.2x", reg);
        nw = 4 * sizeof(unsigned char);
        nr = 4 * sizeof(unsigned char);
    }

    ret = write(fd, cmd, nw);
    if (ret == -1) {
        acr120_errno = 5;
        return ACR120_ERROR;
    }

    while (bytes < nr) {
        if (timeout) {
            ret = acr120_timeout(fd, timeout);
            if (ret == ACR120_ERROR)
                return ret;
        }
        ret = read(fd, ans + bytes, nr - bytes);
        if (ret == -1) {
            acr120_errno = 6;
            return ACR120_ERROR;
        }
        bytes += ret;
        if (acr120_proto_mode && bytes > 4 && !check) {
            switch (ans[3]) {
                case 'N':
                    acr120_errno = 9;
                    return ACR120_ERROR;
                case 'I':
                    acr120_errno = 10;
                    return ACR120_ERROR;
                case 'F':
                    acr120_errno = 13;
                    return ACR120_ERROR;
            }
            check ^= 1;
        }
    }

    if (acr120_proto_mode) {
        if (check_bin_error(ans, sizeof(ans))) {
            acr120_errno = 24;
            return ACR120_ERROR;
        }
        *value = ans[3];
    } else {
        if (check_ascii_error(ans, 4)) {
            acr120_errno = 24;
            return ACR120_ERROR;
        }
        ans[2] = 0;
        sscanf((char*) ans, "%x", (unsigned int*) value);
    }
    acr120_errno = 1;
    return ACR120_SUCCESS;
}

int acr120_copy_block(int fd, unsigned char sid, unsigned char source,
                unsigned char dest, int timeout)
{
    int ret;
    unsigned char cmd[8], ans[9];
    size_t bytes = 0;

    cmd[0] = STX;
    cmd[1] = sid;
    cmd[2] = 0x3;
    cmd[3] = '=';
    cmd[4] = source;
    cmd[5] = dest;
    cmd[6] = cmd[1] ^ cmd[2] ^ cmd[3] ^ cmd[4] ^ cmd[5];
    cmd[7] = ETX;
   
    ret = write(fd, cmd, sizeof(cmd));
    if (ret == -1) {
        acr120_errno = 5;
        return ACR120_ERROR;
    }
    while (bytes < sizeof(ans)) {
        if (timeout) {
            ret = acr120_timeout(fd, timeout);
            if (ret == ACR120_ERROR)
                return ret;
        }
        ret = read(fd, ans + bytes, sizeof(ans) - bytes);
        if (ret == -1) {
            acr120_errno = 6;
            return ACR120_ERROR;
        }
        bytes += ret;
        if (bytes > 3) {
            switch (ans[3]) {
                case 'X':
                    acr120_errno = 22;
                    return ACR120_ERROR;
                case 'N':
                    acr120_errno = 9;
                    return ACR120_ERROR;
                case 'I':
                    acr120_errno = 10;
                    return ACR120_ERROR;
                case 'F':
                    acr120_errno = 23;
                    return ACR120_ERROR;
            }
        }
    }
    acr120_errno = 1;
    return ACR120_SUCCESS;
}

int acr120_inc_value(int fd, unsigned char sid, unsigned char block,
                unsigned int inc, int timeout)
{
    int ret, i;
    unsigned char cmd[11], ans[9], data[4];
    size_t bytes = 0;

    dec2nibble(inc, data);
    cmd[0] = STX;
    cmd[1] = sid;
    cmd[2] = 6;
    cmd[3] = '+';
    cmd[4] = block;
    cmd[5] = data[0];
    cmd[6] = data[1];
    cmd[7] = data[2];
    cmd[8] = data[3];
    cmd[10] = ETX;

    for (i = 1, cmd[9] = 0; i < 9; i++)
        cmd[9] ^= cmd[i];

    ret = write(fd, cmd, sizeof(cmd));
    if (ret == -1) {
        acr120_errno = 5;
        return ACR120_ERROR;
    }
    while (bytes < sizeof(ans)) {
        if (timeout) {
            ret = acr120_timeout(fd, timeout);
            if (ret == ACR120_ERROR)
                return ret;
        }
        ret = read(fd, ans + bytes, sizeof(ans) - bytes);
        if (ret == -1) {
            acr120_errno = 6;
            return ACR120_ERROR;
        }
        bytes += ret;
        if (bytes > 3) {
            switch (ans[3]) {
                case 'X':
                    acr120_errno = 17;
                    return ACR120_ERROR;
                case 'N':
                    acr120_errno = 9;
                    return ACR120_ERROR;
                case 'I':
                    acr120_errno = 10;
                    return ACR120_ERROR;
                case 'F':
                    acr120_errno = 18;
                    return ACR120_ERROR;
            }
        }
    }
    acr120_errno = 1;
    return ACR120_SUCCESS;
}

int acr120_dec_value(int fd, unsigned char sid, unsigned char block,
                unsigned int dec, int timeout)
{
    int ret, i;
    unsigned char cmd[11], ans[9], data[4];
    size_t bytes = 0;
   
    dec2nibble(dec, data);
    cmd[0] = STX;
    cmd[1] = sid;
    cmd[2] = 6;
    cmd[3] = '-';
    cmd[4] = block;
    cmd[5] = data[0];
    cmd[6] = data[1];
    cmd[7] = data[2];
    cmd[8] = data[3];
    cmd[10] = ETX;
   
    for (i = 1, cmd[9] = 0; i < 9; i++)
        cmd[9] ^= cmd[i];

    ret = write(fd, cmd, sizeof(cmd));
    if (ret == -1) {
        acr120_errno = 5;
        return ACR120_ERROR;
    }
    while (bytes < sizeof(ans)) {
        if (timeout) {
            ret = acr120_timeout(fd, timeout);
            if (ret == ACR120_ERROR)
                return ret;
        }
        ret = read(fd, ans + bytes, sizeof(ans) - bytes);
        if (ret == -1) {
            acr120_errno = 6;
            return ACR120_ERROR;
        }
        bytes += ret;
        if (bytes > 3) {
            switch(ans[3]) {
                case 'X':
                    acr120_errno = 19;
                    return ACR120_ERROR;
                case 'N':
                    acr120_errno = 9;
                    return ACR120_ERROR;
                case 'I':
                    acr120_errno = 10;
                    return ACR120_ERROR;
                case 'F':
                case 'E':
                    acr120_errno = 20;
                    return ACR120_ERROR;
            }
        }
    }
    acr120_errno = 1;
    return ACR120_SUCCESS;
}

int acr120_power_on(int fd, unsigned char sid, int timeout)
{
    int ret;
    unsigned char cmd[8], ans[6];
    size_t bytes = 0;

    cmd[0] = STX;
    cmd[1] = sid;
    cmd[2] = 3;
    cmd[3] = 'p';
    cmd[4] = 'o';
    cmd[5] = 'n';
    cmd[6] = cmd[1] ^ cmd[2] ^ cmd[3] ^ cmd[4] ^ cmd[5];
    cmd[7] = ETX;
   
    ret = write(fd, cmd, sizeof(cmd));
    if (ret == ACR120_ERROR) {
        acr120_errno = 5;
        return ret;
    }

    /*
     * actually no error condition answer here, but the
     * reader will send 6 bytes of characters reply, so we
     * only receive the buffer to make sure it is empty
     */
    while (bytes < sizeof(ans)) {
        if (timeout) {
            ret = acr120_timeout(fd, timeout);
            if (ret == ACR120_ERROR)
                return ret;
        }
        ret = read(fd, cmd + bytes, sizeof(cmd) - bytes);
        if (ret == -1) {
            acr120_errno = 6;
            return ACR120_ERROR;
        }
        bytes += ret;
    }
    acr120_errno = 1;
    return ACR120_SUCCESS;
}

int acr120_power_off(int fd, unsigned char sid, int timeout)
{
    int ret;
    unsigned char cmd[9], ans[6];
    size_t bytes = 0;

    cmd[0] = STX;
    cmd[1] = sid;
    cmd[2] = 4;
    cmd[3] = 'p';
    cmd[4] = 'o';
    cmd[5] = 'f';
    cmd[6] = 'f';
    cmd[7] = cmd[1] ^ cmd[2] ^ cmd[3] ^ cmd[4] ^ cmd[5] ^ cmd[6];
    cmd[8] = ETX;

    ret = write(fd, cmd, sizeof(cmd));
    if (ret == ACR120_ERROR) {
        acr120_errno = 5;
        return ret;
    }
    while (bytes < sizeof(ans)) {
        if (timeout) {
            ret = acr120_timeout(fd, timeout);
            if (ret == ACR120_ERROR)
                return ret;
        }
        ret = read(fd, cmd + bytes, sizeof(cmd) - bytes);
        if (ret == -1) {
            acr120_errno = 6;
            return ACR120_ERROR;
        }
        bytes += ret;
    }
    acr120_errno = 1;
    return ACR120_SUCCESS;
}